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Fig. 6. Bandwidth�c1=�c2 versuss=a. All parameters and denotations as
in Fig. 5. (a)h=b = 0:4 and (b)h=b = 0:2.

the SRG bandwidth, but the cutoff wavelength can be substantially
larger. Thus, the properly designed RTW can be a broad-band low-
impedance transmission medium. The RTW in the other configuration
with a ridge wider than the trough appears less useful because the
trough lowers both the cutoff wavelength and bandwidth.

REFERENCES

[1] K. E. Jones, E. W. Strid, and K. R. Gleason, “Mm-wave wafer probes
span 0 to 50 GHz,”Microwave J.,vol. 30, no. 4, pp. 177–183, 1987.

[2] G. Begemann, “AnX-band balanced finline mixer,”IEEE Trans.
Microwave Theory Tech.,vol. MTT-26, pp. 1007–1011, 1978.

[3] J. V. Bellantoni, R. C. Compton, and H. M. Levy, “A newW -band
coplanar waveguide text fixture,” in1989 IEEE MTT-S Int. Microwave
Symp. Dig.,pp. 1203–1204.

[4] G. E. Ponchak and R. N. Simons, “A new rectangular waveguide to
coplanar waveguide transition,” inIEEE MTT-S Int. Microwave Symp.
Dig., vol. I, Dallas, TX, May 8–10, 1990, pp. 491–493.

[5] E. M. Godshalk, “A V -band wafer probe using ridge-trough wave-
guide,” IEEE Trans. Microwave Theory Tech.,vol. 39, pp. 2218–2228,
Dec. 1991.

[6] R. N. Simons, “New channelised coplanar waveguide to rectangular
waveguide post and slot couplers,”Elec. Lett., vol. 27, no. 10, pp.
856–857, 1991.

[7] R. N. Simons and S. R. Taub, “New coplanar waveguide to rectangular
waveguide end launcher,”Elec. Lett.,vol. 28, no. 12, pp. 1138–1139,
June 4, 1992.

[8] J. P. Montgomery, “On the complete eigenvalue solution of ridged
waveguide,”IEEE Trans. Microwave Theory Tech.,vol. MTT-19, pp.
547–555, June, 1971.

[9] D. Dasgupta and P. K. Saha, “Eigenvalue spectrum of rectangular
waveguide with two symmetrically placed double ridges,”IEEE Trans
Microwave Theory Tech.,vol. MTT-29, pp. 47–51, Jan. 1981.

[10] G. G. Mazumder and P. K. Saha, “A novel rectangular waveguide with
double T-septums,”IEEE Trans. Microwave Theory Tech.,vol. MTT-33,
pp. 1235–1238, Nov. 1985.

[11] P. K. Saha and D. Guha, “New broadband rectangular waveguide with
L-shaped septa,”IEEE Trans. Microwave Theory Tech.,vol. 40, pp.
777–781, Apr. 1992.

Modal Scattering Matrix of the General
Step Discontinuity in Elliptical Waveguides

Pawe l Matras, Rainer Bunger, and Fritz Arndt

Abstract—In this paper, a direct mode-matching technique is proposed
for the calculation of the modal scattering matrix of nonconfocal, twisted,
and/or displaced step discontinuities in elliptical waveguides of different
cross sections. For the convenient treatment of the Mathieu functions, an
efficient trigonometric series expansion technique is used. As examples,
the scattering parameters are calculated for typical step discontinuities
demonstrating the flexibility of the method.

Index Terms— Mode-matching methods, waveguide discontinuities,
waveguide junctions.

I. INTRODUCTION

For the analysis of the step discontinuity at elliptical waveg-
uides, an efficient direct mode-matching technique has been recently
proposed [5]. The investigation was limited to the simple case of
confocal elliptic cross sections. The rigorous solution of the scattering
problem at the general (nonconfocal, twisted, and/or displaced)
discontinuity [see Fig. 1(a)], however, is required for the analysis
of more complicated structures such as displaced elliptic irises or
shaped horns. This paper presents, therefore, the extension of the
direct mode-matching technique to this general case.

II. THEORY

For a waveguide of elliptical cross section [cf. Fig. 1(b)] with the
focal distance2h, the wave equation for the corresponding transversal
eigenfunctionsT (�; �) = U(�)V (�) is given in elliptic coordinates
�, �, z by [4]

@2V

@�2
+ (a� 2q cos 2�)V = 0 (1)

@2U

@�2
� (a� 2q cosh 2�)U = 0 (2)
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(a)

(b)

Fig. 1. General (nonconfocal, displaced, and twisted) step discontinuity at
elliptical waveguides of different cross section. (a) General step discontinuity.
(b) Elliptical coordinate system.

with the abbreviation

q =
k2
c

4
h
2 (3)

where kc is the cutoff wavenumber anda is a constant, which is
denoted as the “separation constant” [4].1

The formal solution of the eigenvalue problem (1) and (2) leads
to [4]

T (�; �) =
Ce(�)ce(�)
Se(�)se(�)

(4)

where ce, se, and Ce, Se denote the even and odd Mathieu, and even
and odd modified Mathieu functions, respectively. Equation (2) (the
modified Mathieu equation), is related to (1) (the Mathieu equation),
via the transformation� = j�, wherej =

p�1.
Equation (1) is solved by the following trigonometric series ex-

pansion of [2] and [7]:

ce2n(�) =
1

r=0

A2r cos (2r�) (5)

ce2n+1(�) =
1

r=0

A2r+1 cos [(2r + 1)�] (6)

se2n+1(�) =
1

r=0

B2r+1 sin [(2r + 1)�] (7)

se2n+2(�) =
1

r=0

B2r+2 sin [(2r + 2)�]: (8)

For the solution of (2), a Bessel function expansion is used for the
modified Mathieu functions [1] and [7].

With (1)–(8), first the separation constanta in (1) and (2), and
then the coefficients in (5)–(8) are determined numerically. Fora,
the equation

L(a) = a�m
2 � um � vm

=0; m � 0 (9)

1The separation constant is usually denoted in literature witha [4]; this
should not be confused with the semimajor axisai [cf. Fig. 1(b)].

is obtained with the abbreviations:2

m =

2n for ce2n;
2n+ 1 for ce2n+1 and se2n+1;
2n+ 2; for se2n+2;

vm =
tvq

2

a� (m+ 2)2 � vm+2
; n � 0

um =

u0; n = 0

tuq
2

a� (m� 2)2 � um�2
; n � 1

(10)

where

tv =
2; for ce andv0
1; else

tu =
2; for ce andu2
1; else.

(11)

and

u0 =

0; for evenm
q; for oddm and ce
�q; for oddm and se:

v andu are supplementary variables [7] formulated by the ratio of
the corresponding coefficients in (5)–(8), e.g., for (5)

vi =
Ai+2

Ai

ui =
Ai�2

Ai

: (12)

The solution of (9) for the first few modes (m � 10) by
usual numerical methods is rather straightforward. For higher mode
numbers, however, the following difficulties may arise.

1) For a given value ofq there may exist several values ofa
which can satisfy (9).

2) The expressionL(a), (9), is not continuous. It has several poles.
3) The zero of the functionL(a) to be determined can be hidden

between two poles. A typical functionL(a) is shown in
Fig. 2(a).

In order to overcome these difficulties, good starting values fora

and suitable numerical methods are required. It has turned out that
the starting value should deviate from the exact solution by less than
7% for modesm � 10; for higher-mode numbersm the accuracy of
the starting value still has to be increased. So for the modem = 300

the error should be less than 0.3%. In [1], [2], and [7] many good
approximations fora can be found, but they are sufficiently accurate
only for “small q” or “large q” values. A typical functiona(q) is
shown in Fig. 2(b). For intermediate values ofq (in Fig. 2(b), for
instance, between ca. 1000 and 2500), a parabolic approximation has
been used by the authors which gives appropriate starting values.

For the standard calculation of the zeros forL(a) (9), the secant
method has turned out to be the fastest method in comparison with
Muller’s, Newton’s, and theregula falsi method. For the indicated
critical cases, a hybrid algorithm has been formulated which starts
with the secant method, then applies a type of the bisection method,
and ends with theregula falsi. This combined algorithm works in
both a fast and accurate fashion (at least for 13 reliable, significant
digits), for modesm � 300 and for all positive values ofq, which
is sufficient for the proposed application.3

2This notation, different from that in [7], is common for all modes. This
leads merely to one equation (instead of four); the parameters need to be
initialized only when the mode changes (tu, tv) or at the beginning of the
calculation of the value of the functions (vm; um).

3For still higher mode numbers, better starting values fora (error< 0.3%)
for the “intermediate” values ofq have to be chosen.
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(a)

(b)

Fig. 2. Determination of the separation constanta, cf., (9). (a) Typical
functionL(a) (ce,m = 50, q = 1650). (b) Typical functiona(q) (m = 50,
q = 1650).

The consideration of the normalization conditions [7], e.g., for
ce2n(�):

2�

0

1

r=0

A2r cos (2rz)

2

dz
!

=� (13)

leads to expressions of the form

2 + v
2

0 + (v0v2)
2 + (v0v2v4)

2 + � � � =
1

A2

0

: (14)

From (14),A0 can be determined. The other coefficientsA are then
calculated by (10) and (12).

The formal solution of the boundary conditions leads to the
following [7]:

Ce0 (�0; qc)
Se0 (�0; qc)

= 0; for TE waves (15)

Ce(�0; qc)
Se(�0; qc)

= 0; for TM waves (16)

whereqc are the parametric zeros of the modified Mathieu functions,
[cf., also (3)]. Withqc, the cutoff frequencies are given by

fc =
1

�h

qc

��

=
c

�h

p
qc: (17)

The modes are classified according to increasing cutoff frequencies.
The quasi-periodicity ofq in (15) and (16) is utilized to calculate

Fig. 3. Coordinate system at the general step discontinuity of elliptical
waveguides.

the starting values for the nextqc. The accurate value is then
calculated with the secant method. This algorithm works reliably for
eccentricities0:001 < e < 0:999.

The cutoff frequencies of typical elliptical waveguide cross sections
have been calculated up to 300 higher order modes and have
been compared with the authors’ own finite element method (FEM)
calculations and values reported in [8]. Excellent agreement (up to
eight digits) has been obtained.

The modal scattering matrix of the general discontinuity (Figs. 1
and 3) is obtained in the usual form [3] by the matching of the
tangential field components. Application of the orthogonality of the
eigenfunctions and rearranging the equations yields the modal scat-
tering matrix of the discontinuity directly. The normalized matching
equations in terms of the eigenmode amplitude coefficientsaaa, bbb of
the forward and backward waves, respectively, are given by

aaa1 + bbb1 = [MMM ](aaa2 + bbb2) (18)

aaa2 � bbb2 = [MMM ]T (aaa1 � bbb1) (19)

where4

MMM = ���1KKK���2 (20)

with the diagonal matrices��� containing the normalization expressions
N and the frequency dependent wave impedances and admittances
of the adjacent waveguides, respectively.

For elliptical waveguides the following equation was evaluated as
a normalization expression:

2�q
�

0

Ce2 (�)
Se2 (�)

[cosh (2�)�X] d�

=

1

N2

i Yi
; for TE waves

1

N2

i Zi

; for TM waves
(21)

where

X =
1

�

2�

0

ce2 (�)
se2 (�)

cos (2�)d�

andZi, Yi, Ni are the wave impedances, admittances, and normal-
ization constant, respectively, of theith mode classified in increasing
cutoff frequency. This expression can be calculated efficiently by
merely using the coefficientAi of the Mathieu functions (see [7]).

4the index “1” denotes the larger waveguide, and the index “2” denotes the
smaller one.
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(a) (b)

(c)

Fig. 4. Input reflection coefficient as a function of frequency (all dimensions in millimeters). (a) Discontinuity of two nonconfocal, concentric elliptic
waveguides. (b) Discontinuity of two nonconfocal, twisted elliptic waveguides. (c) Discontinuity of two nonconfocal, displaced elliptic waveguides.

The diagonal matrices��� are given as follows:

�1i; i =
Ni; TM wave in the first region
NiYi; TE wave in the first region

(22)

�2i; i =
NiZi; TM wave in the second region
Ni; TE wave in the second region.

(23)

The general discontinuity of elliptic waveguides is shown in Fig. 3.
The coordinate system of the smaller waveguide (index “2”) was
chosen in this paper as the reference system. The points�2, �2 of
the smaller waveguide are transformed into the coordinates�1 and
�1 via algorithmic expressions. First, from�2 and�2, x2 andy2 are
calculated, rotated, and moved, andx1 andy1 are obtained. Then�1
and �1 are calculated by

�1 = acosh
x2
1
+ y2

1
+ h2

1
+ (x2

1
+ y2

1
+ h2

1
)2 � 4h2

1
x2
1

2h2
1

(24)

and

�1 = acos
x1

cosh �1
: (25)

The coefficients of the coupling matrixKKK in (20), the coupling
integralsKk; l, are given by expressions like

Kk; l =




(~e2l � ~h1k)d
 (26)

where ~e, ~h are the related vector functions of the cross-sectional
form of the mode fields [6]; for the calculation, the surface integral
is advantageously transformed via Green’s first identity into the
corresponding contour integral. The frequency independent coupling

integrals for the different mode couplings are explicitly given in
the Appendix for the general (nonconfocal, twisted, and displaced)
case. For a discontinuity of confocal elliptic waveguides the coupling
integrals are given in [5].

With the relation

bbb2 (EEE +MMM
T
MMM)

PPP

= 2MMM
T
aaa1 + (EEE �MMM

T
MMM)

QQQ

aaa2

the corresponding modal scattering matrix is calculated by

SSS11 =2MMMPPP
�1
MMM

T
�EEE (27)

SSS12 =MMM(EEE + PPP
�1
QQQ) (28)

SSS21 =2PPP
�1
MMM

T (29)

SSS22 =PPP
�1
QQQ: (30)

III. RESULTS

Fig. 4 show the input reflection coefficients as a function of
frequency for three discontinuities of two nonconfocal elliptic
waveguides; Fig. 4(a) for two concentric waveguides, Fig. 4(b) for
two twisted waveguides, and Fig. 4(c) for two displaced waveguides.
The results are verified with values obtained by the mode-
matching/finite element (MM/FE) method [3]. Excellent agreement
may be stated. Results for the confocal case are given in [5].

In order to demonstrate the influence of a twist and a displace-
ment of the elliptic waveguides on the reflection coefficient, Fig. 5
shows the input reflection coefficient as a function of frequency
for three different nonconfocal configurations, namely the concentric
configuration, the twisted configuration and the twisted/displaced
configuration. In all considered configurations, the coupling to the
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Fig. 5. Input reflection coefficient as a function of frequency for three
different nonconfocal configurations. (a1 = 10 mm, b1 = 7 mm, a2 = 8

mm, andb2 = 4 mm). (a)� = 0�, xo� = 0 mm,yo� = 0 mm. (b)� = 15�,
xo� = 0 mm, yo� = 0 mm. (c)� = 15�, xo� = 1 mm, yo� = 2 mm.

Es1; 1 mode (fc � 24.3 GHz) in the first waveguide causes a peak at
approximately 24.3 GHz. In the second configuration, the coupling
to theEc1; 1 mode (fc � 20.4 GHz) in the first waveguide causes
the discontinuance at approximately 20.4 GHz, the coupling to the
Hs1; 1 mode (fc � 21.0 GHz) in the second waveguide causes the
minimum at approximately 21.0 GHz. In the third configuration, the
coupling to theEc0; 1 mode (fc � 14.2 GHz) in the first waveguide
causes a peak at approximately 14 GHz.

For the calculations, all higher-order modes in the order of increas-
ing cutoff are considered up to the cutoff frequency of 100 GHz.
The efficiency of the presented method may be demonstrated by the
fact that the above direct mode-matching results are calculated by
using a very simple 486-level PC (20 MHz, peak performance ca.
0.2 MFlops), at which the overall central processing unit (CPU) time
for a typical frequency response with 1000 frequency points was
approximately 600 min. The most significant part of the CPU time
was used for solving the eigenvalue problem. The maximum accuracy
(up to 13 digits) has been utilized in this case and the program has
not yet been optimized. The reference calculations in Fig. 4 with
the hybrid MM/FE method [3] took about 30 min on an IBM SP2
workstation (peak performance 260 MFlops). Therefore, the direct
mode-matching technique presented in this paper may be roughly
estimated to be about 65 times faster than the MM/FE method [3]
which is, for its part, already ca. one order of magnitude faster than
a usual three-dimensional (3-D) FEM.

IV. CONCLUSION

In this paper, a direct mode-matching technique was proposed
for the calculation of the modal scattering matrix of the gen-
eral (nonconfocal, displaced, twisted) step discontinuity of elliptical
waveguides. Due to the high numerical efficiency of the method, only
a standard PC is required for the rigorous analysis of the investigated
discontinuities.

APPENDIX

The coupling integrals in (20) and (26) for the general case (Figs. 1
and 3) are given in the following equation.5

5All Mathieu functions depend (aside from the coordinate parameter) upon
the modem and parameterq, which can be evaluated from the wave mode
number and wave cutoff frequency of the appropriate waveguide. To make
the equations more readable only the indexs “1” and “2” are used to indicate
the waveguide to which the Mathieu functions are related.

For all four types of TE–TE couplings; forkc1 6= kc2:

Kk; l =
k2c2

k2c2 � k2c1

Ce2 (�0)
Se2 (�0)

�
2�

0

G2

G1

�
Ce01 (�1)ce1 (�1)~u� + Ce1 (�1)ce01 (�1)~u�
Se01 (�1)se1 (�1)~u� + Se1 (�1)se01 (�1)~u�

�
ce2 (�2)
se2 (�2)

~u� d�2 (31)

otherwise

Kk; l =

�

0

2�

0

1

G1

�
Ce01 (�1)ce1 (�1)~u� + Ce1 (�1)ce01 (�1)~u�
Se01 (�1)se1 (�1)~u� + Se1 (�1)se01 (�1)~u�

�
Ce02 (�2)ce2 (�2)~u� + Ce2 (�2)ce02 (�2)~u�
Se02 (�2)se2 (�2)~u� + Se2 (�2)se02 (�2)~u�

� d�2 d�2: (32)

For all four types of TM–TM couplings; forkc1 6= kc2:

Kk; l =
k2c1k

k2c1k � k2c2l

Ce02 (�0)
Se02 (�0)

�
2�

0

ce2 (�2)
se2 (�2)

Ce1 (�1)ce1 (�1)
Se1 (�1)se1 (�1)

d�2 (33)

otherwise (33).6

For all four types of the TM–TE couplings:

Kk; l =
Ce2 (�0)
Se2 (�0)

�
2�

0

Ce1 (�1)ce1 (�1)
Se1 (�1)se1 (�1)

ce02 (�2)
se02 (�2)

d�2: (34)

For all four types of the TE–TM couplings

Kk; l = 0: (35)

In these equations the dash denotes the corresponding derivative,
�0 is the boundary coordinate of the smaller waveguide, and

Gi = hi cosh2 (�i)� cos2 (�i)

is Lamé’s factor of the transformation.
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Dispersion Characteristics of Open Microstrip
Lines Using Closed-Form Asymptotic Extraction

Seong-Ook Park and Constantine A. Balanis

Abstract—A full-wave spectral-domain method with an asymptotic
extraction technique is formulated for multilayer microstrip lines. This
formulation provides a simple closed-form representation of the asymp-
totic part of the impedance matrix by using Chebyshev polynomial basis
functions with the square-root edge condition and the asymptotic behavior
of the Green’s function. The formulation is applied to open microstrip
lines. Numerical results, in the form of the effective dielectric constants,
are presented for the dominant mode. It is shown that the proposed
method significantly reduces the computational time and improves the
accuracy over the conventional spectral-domain approach (SDA).

Index Terms—Accleration technique, microstrip lines, spectral-domain
approach.

I. INTRODUCTION

The spectral-domain approach (SDA) is the most popular technique
for calculating the dispersion characteristics of open microstrip lines
[1] because it is easy to formulate and is a rigorous full-wave
solution for simple and uniform planar structures. The SDA has been
extensively studied and refined to find well-suited basis functions that
have the ability to accurately represent and resemble the longitudinal
and transverse current densities (Jz and Jx) while minimizing the
computation time [2]–[5].

However, there are still slight discrepancies of the relative effective
permittivity between many numerical results obtained by various
methods [6]. These discrepancies are critically dependent on the
type of basis functions used and the truncation error due to the
finite upper limit (instead of infinity) for the numerical integration
in the evaluation of the impedance matrix elements. Although the
basis functions are carefully chosen to effectively represent the
expected current densities, lengthy computation time is required for
the numerical integration in the evaluation of the impedance matrix
elements to achieve the desired accuracy.

In this paper, as one possible technique for overcoming this, the
authors present a closed form for the asymptotic part of the spectral
impedance matrix to evaluate the relative effective permittivity in sin-
gle conductor, open microstrip lines. Using the asymptotic technique,
the asymptotic part of impedance matrix elements is recognized as
being integrable in closed form by introducing Chebyshev polynomial
basis functions with the square-root edge condition.
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Fig. 1. Geometry of a multilayer microstrip line structure.

To verify the accuracy and speed of the proposed method, com-
putations based on this method were compared with other available
results. There is good agreement between the proposed method and
other available methods. The proposed method significantly reduces
the central processing unit (CPU) time and increases the reliability
and accuracy.

II. CLOSED-FORM ASYMPTOTIC EXTRACTION

OF THE SPECTRAL-DOMAIN GREEN’S FUNCTION

The cross section of a general planar microstrip structure is shown
in Fig. 1. The strip conductor is assumed to be negligibly thin and the
line lossless. The substrate and superstrate materials are lossless and
isotropic. The open microstrip lines in [4] can be accurately modeled
by lettinghUM !1, considering only one substrate and superstrate
in Fig. 1. To calculate the effective dielectric constant (dispersion
characteristic), the proposed method in this paper is formulated to
include any number of substrate or superstrate structures. However,
to verify the authors’ method, an open microstrip line is used and the
results are compared with previously published data [3], [4], [6].

As an initial step to investigate the asymptotic closed-form ex-
traction for the impedance matrix elements, the authors extract the
asymptotic behavior of the Green’s function, with respect to�.
Assuming that� is sufficiently large, one can make the following
approximation:


i = �2 + �2 � k2i ' j�j; if �2
� (�re� � �ri)k

2
0 (1)

coth (
ihi) ' coth (j�jhi) ' 1; if j�jhi>3 (2)

�
2
+ �

2
' �

2 (3)

where�, �, and
i are the wavenumbers in thêx, ẑ, andŷ directions,
respectively [1].

Since (2) is in error by about 0.5% forj�jhi = 3, coth (j�jhi) ' 1

is a good approximation forj�jhi > 3. Using the above approxima-
tions, asymptotic expressions of the recurrence Green’s function in
[7] can be derived as follows [after correcting for the misprints in [7]
where�2

y(j)=�
2
r(j) is replaced by�2r(j)=�

2
y(j) in (9a) and�2r(j)=�

2
y(j)

is replaced by�2
y(j)=�

2
r(j) in (9b)]:

~G
1

zz '
1

j�j

�2

�rLN + �rUM
� k

2
0

�rLN�rUM

�rLN + �rUM
(4)

~G
1

xx '
j�j

�rLN + �rUM
(5)

~G
1

xz '
�

�rLN + �rUM
� sgn(�) (6)
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