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5.0 Modal Scattering Matrix of the General

Step Discontinuity in Elliptical Waveguides

oo Pawd Matras, Rainer Bunger, and Fritz Arndt

Abstract—in this paper, a direct mode-matching technique is proposed
for the calculation of the modal scattering matrix of nonconfocal, twisted,

'<$ 3.0 - and/or displaced step discontinuities in elliptical waveguides of different
N r cross sections. For the convenient treatment of the Mathieu functions, an
5 K efficient trigonometric series expansion technique is used. As examples,
< 2.0 the scattering parameters are calculated for typical step discontinuities
“r demonstrating the flexibility of the method.
- Index Terms— Mode-matching methods, waveguide discontinuities,
H waveguide junctions.
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I. INTRODUCTION
(b)

For the analysis of the step discontinuity at elliptical waveg-
Fig. 6. BandwidthA.; /A.2 versuss/a. All parameters and denotations asyjdes, an efficient direct mode-matching technique has been recently
in Fig. 5. (@)h/b = 0.4 and (b)h/b = 0.2. proposed [5]. The investigation was limited to the simple case of
confocal elliptic cross sections. The rigorous solution of the scattering

the SRG bandwidth, but the cutoff wavelength can be substantiaRjoblem at the general (nonconfocal, twisted, and/or displaced)
larger. Thus, the properly designed RTW can be a broad-band lo#scontinuity [see Fig. 1(a)], however, is required for the analysis
impedance transmission medium. The RTW in the other configuratiBh more complicated structures such as displaced elliptic irises or
with a ridge wider than the trough appears less useful because $h@ped horns. This paper presents, therefore, the extension of the
trough lowers both the cutoff wavelength and bandwidth. direct mode-matching technique to this general case.
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is obtained with the abbreviatiofis:

2n for cexn,
m = { 2n +1 for cexn41 and se, 1,
2n + 2, for s& 42,
toq®
Vyn = q‘ N n>0
a— (m4+2)2—vmia’ -
wo n=20
1 = tu 2
U = { ,q' Con>1 (10)
a—(m—2)2 — Um—2 -
where
2, for ce anduy
ty, =
1, else
2 for ce andus
ty =3 11
{ 1, else. 11
and
0, for evenm
uog = { q, for oddm and ce
—q, for oddm and se

v andw« are supplementary variables [7] formulated by the ratio of

Fig. 1. General (nonconfocal, displaced, and twisted) step discontinuity g corresponding coefficients in (5)—(8), e.g., for (5)
elliptical waveguides of different cross section. (a) General step discontinuity. ' '

(b) Elliptical coordinate system.

with the abbreviation

k2 o
Q—Th (3)

where k. is the cutoff wavenumber and is a constant, which is

denoted as the “separation constant” {4].

The formal solution of the eigenvalue problem (1) and (2) leads 1)

to [4]

_ JCe(&)ce(n)
T m = {Se(é‘)se(n) } @

where ce, se, and Ce, Se denote the even and odd Mathieu, and even

v, = Aito
A;
Ao
A;

(12)

The solution of (9) for the first few modesn( < 10) by
usual numerical methods is rather straightforward. For higher mode
numbers, however, the following difficulties may arise.

For a given value of; there may exist several values of
which can satisfy (9).

2) The expressioh(a), (9), is not continuous. It has several poles.
3) The zero of the functioi.(«) to be determined can be hidden
between two poles. A typical functiod(a) is shown in
Fig. 2(a).

and odd modified Mathieu functions, respectively. Equation (2) (theIn order to overcome these difficulties, good starting values:for
modified Mathieu equation), is related to (1) (the Mathieu equatiorind suitable numerical methods are required. It has turned out that

via the transformatio = j», wherej = /—1.

the starting value should deviate from the exact solution by less than

Equation (1) is solved by the following trigonometric series ex7% for modesn < 10; for higher-mode numbers: the accuracy of

pansion of [2] and [7]:

Cen (1) = i Ay cos (2rn) ®)
=0

C&nt1(n) = i Asrqr cos[(2r + 1)7] (6)
=0

S&n+1(n) = i Bor gy sin[(2r + 1)1)] 7
=0

S&nt2(1n) = i Bayqo sin [(2r + 2)7). (8)

=0

the starting value still has to be increased. So for the mode 300
the error should be less than 0.3%. In [1], [2], and [7] many good
approximations for: can be found, but they are sufficiently accurate
only for “small ¢” or “large ¢” values. A typical functiona(q) is
shown in Fig. 2(b). For intermediate values @f(in Fig. 2(b), for
instance, between ca. 1000 and 2500), a parabolic approximation has
been used by the authors which gives appropriate starting values.
For the standard calculation of the zeros fdwm) (9), the secant
method has turned out to be the fastest method in comparison with
Muller's, Newton’s, and theegula falsimethod. For the indicated
critical cases, a hybrid algorithm has been formulated which starts
with the secant method, then applies a type of the bisection method,

For the solution of (2), a Bessel function expansion is used for ti&&@d ends with theegula falsi This combined algorithm works in

modified Mathieu functions [1] and [7].

both a fast and accurate fashion (at least for 13 reliable, significant

With (1)—(8), first the separation constamtin (1) and (2), and digits), for modesn < 300 and for all positive values of, which
then the coefficients in (5)—(8) are determined numerically. For is sufficient for the proposed application.

the equation
L(a) =a - m? =, — vy,
=0, m >0 9

1The separation constant is usually denoted in literature wifd]; this
should not be confused with the semimajor axjs[cf. Fig. 1(b)].

2This notation, different from that in [7], is common for all modes. This
leads merely to one equation (instead of four); the parameters need to be
initialized only when the mode changess, ( ¢,;) or at the beginning of the
calculation of the value of the functions,{, ).

3For still higher mode numbers, better starting valuesafgerror < 0.3%)
for the “intermediate” values of have to be chosen.
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(@) Fig. 3. Coordinate system at the general step discontinuity of elliptical
waveguides.
3600
3400 + the starting values for the next.. The accurate value is then
1 calculated with the secant method. This algorithm works reliably for
= 32004 eccentricities).001 < e < 0.999.
= 5000 1 The cutoff frequencies of typical elliptical waveguide cross sections

have been calculated up to 300 higher order modes and have
been compared with the authors’ own finite element method (FEM)
calculations and values reported in [8]. Excellent agreement (up to
eight digits) has been obtained.

] The modal scattering matrix of the general discontinuity (Figs. 1
2400 ——— and 3) is obtained in the usual form [3] by the matching of the
0 500 1000 1500 2000 2500 3000 3500 4000 tangential field components. Application of the orthogonality of the
eigenfunctions and rearranging the equations yields the modal scat-
tering matrix of the discontinuity directly. The normalized matching
(b) equations in terms of the eigenmode amplitude coefficients of

Fig. 2. Determination of the separation constantcf., (9). (a) Typical the forward and backward waves, respectively, are given by
function L(a) (ce, m = 50, ¢ = 1650). (b) Typical functiona(g) (m = 50,

a(q=1650) = 3217.82

qQq —

q = 1650). a1 + by =[M](az + b2) (18)
as — by =[M]" (ay — b)) (19)
The.consideration of the normalization conditions [7], e.g., fovrvheré‘
o b T 2 M = 6. K6, (20)
/0 [; Az cos (27'3)} dz=m (13) with the diagonal matrice$ containing the normalization expressions

N and the frequency dependent wave impedances and admittances

leads to expressions of the form of the adjacent waveguides, respectively.

2 4 02 + (vov2)? + (vovava)? + - = 1 (14) For elliptical waveguides the following equation was evaluated as
° B B AZ° a normalization expression:
From (14),A4, can be determined. The other coefficiedtare then €0 (CE () _
calculated by (10) and (12). 2mq / {Se2 ©) }[COSh (2¢) — X]d¢
The formal solution of the boundary conditions leads to the 0 1 )
following [7]: NIy for TE waves
C€ (&0, qc) } =4 5 (21)
’ =0, for TE waves 15
{Sé (Zo. q0) , (15) Nz for TM waves
Ce(&os qc) | _
{Se(fo, o[ = 0, for TM waves (16) where )
whereq. are the parametric zeros of the modified Mathieu functions, X = 1 / {Zé E’@ } cos (2n) dn
[cf., also (3)]. Withg., the cutoff frequencies are given by T Jo g
1 [ and Z;, Y;, N; are the wave impedances, admittances, and normal-
©=Th e ization constant, respectively, of thih mode classified in increasing
¢ cutoff frequency. This expression can be calculated efficiently by
= ap Ve 17) merely using the coefficiend; of the Mathieu functions (see [7]).

The modes are classified according to increasing cutoff frequenciesiihe index “1” denotes the larger waveguide, and the index “2” denotes the
The quasi-periodicity of; in (15) and (16) is utilized to calculate smaller one.
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Fig. 4. Input reflection coefficient as a function of frequency (all dimensions in millimeters). (a) Discontinuity of two nonconfocal, concéptidc ell
waveguides. (b) Discontinuity of two nonconfocal, twisted elliptic waveguides. (c) Discontinuity of two nonconfocal, displaced elliptic deszegui

The diagonal matrice§ are given as follows: integrals for the different mode couplings are explicitly given in
N;.  TM wave in the first region the Appendix for the general (nonconfocal, twisted, and displaced)
b1i,i = { N;Y;, TE wave in the first region (22)  case. For a discontinuity of confocal elliptic waveguides the coupling

integrals are given in [5].

Sis = { N:Z;, TM wave in the second region (23) With the relation

Ni, TE wave in the second region. - - .
The general discontinuity of elliptic waveguides is shown in Fig. 3. by (E+M M)=2M a, + (E-M M)a
The coordinate system of the smaller waveguide (index “2") was P Q

chosen in this paper as the reference system. The péints, of

i ) ” the corresponding modal scattering matrix is calculated by
the smaller waveguide are transformed into the coordingtesnd

—1 35T
71 via algorithmic expressions. First, froga ands., z» andy, are S =2MP M -E (27)
calculated, rotated, and moved, andandy: are obtained. Thet S, =M(E+ Ple) (28)
and n; are calculated by Sor =2P 'MT (29)
a3 +yi+h? 4+ \/(Lf +y? 4+ h3)2 —4hiad S =P7'Q. (30)
& = acos .
2h2
(24) Il. RESULTS

Fig. 4 show the input reflection coefficients as a function of

“ frequency for three discontinuities of two nonconfocal elliptic

7 = acos———. (25) waveguides; Fig. 4(a) for two concentric waveguides, Fig. 4(b) for
cosh & two twisted waveguides, and Fig. 4(c) for two displaced waveguides.

The coefficients of the coupling matrik in (20), the coupling The results are verified with values obtained by the mode-

and

integrals I, ;, are given by expressions like matching/finite element (MM/FE) method [3]. Excellent agreement
N / - may be stated. Results for the confocal case are given in [5].
Ky = // (€21 X k) dQ (26) In order to demonstrate the influence of a twist and a displace-
Q

ment of the elliptic waveguides on the reflection coefficient, Fig. 5
where &, I, are the related vector functions of the cross-sectionshows the input reflection coefficient as a function of frequency
form of the mode fields [6]; for the calculation, the surface integrdibr three different nonconfocal configurations, namely the concentric
is advantageously transformed via Green'’s first identity into theonfiguration, the twisted configuration and the twisted/displaced
corresponding contour integral. The frequency independent coupliognfiguration. In all considered configurations, the coupling to the
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1 For all four types of TE-TE couplings; fot.1 # k.o:
09 a) . k2 Ce (£ e
OB‘ ————— b) IX/L:‘l:kg Csz {S_(&))}X/ C—Z
7 ) e2 T Pl Q(EO) 0 ™1
5071 Cé, (¢1)cer (11)Te, + Cer ()06 (1),
0.6 Sd (&1)se (n1)ide, + Se (&1)s6 ()i,
0.5 ce (n2) | -
0'43 X {Sez () e, dna (31)
031 otherwise
02—_ g3 27 1
0.1 K= / /
. 0 , G
10 15 20 %5 10 o JCeL(&)ce (mi)ie, + Cer (&1)ce) ()i,
f/GHz ——» S€ (&1)s@ (m1)de, + Se (§1)s8 (1),
Fig. 5. Input reflection coefficient as a function of frequency for three % {Céz (&2)ce ('112)1252 + Ce; (£2)c6 ("12)17772 }
different nonconfocal configurationsay( = 10 mm, by = 7 mm, a2 = 8 S€, (£2)8@ (12)de, + Se (£2)S6 (12) Ty,
mm, andby = 4 mm). (@) = 0°, zor = 0 MM, yogr = 0 mMm. (b)ar = 15°, X dnjz dés. (32)

o =0 MM, yog = 0 Mm. (C) v = 15°, g = 1 MM, yor = 2 mm.
For all four types of TM—TM couplings; fok.; # k.a:

Eq,1 mode (f. ~ 24.3 GHz) in the first waveguide causes a peak at -,  _ _ keik {Ce‘z (€0) }

approximately 24.3 GHz. In the second configuration, the coupling ' k2., — k%, 1 S& (&)

to the E..;,1 mode (f. ~ 20.4 GHz) in the first waveguide causes 27 (e (n2) ) [Ce (&1)cer (1)

the discontinuance at approximately 20.4 GHz, the coupling to the x /0 {SQ (n2) }{Sa (&1)se (1) } 1172 (33)

H,i 1 mode (f. = 21.0 GHz) in the second waveguide causes the
minimum at approximately 21.0 GHz. In the third configuration, thetherwise (33f.
coupling to theE.o,; mode (f. ~ 14.2 GHz) in the first waveguide For all four types of the TM-TE couplings:
causes a peak at approximately 14 GHz. ; Ce (&)
For the calculations, all higher-order modes in the order of increas- 1%.1 = {S@ (¢0) }
ing cutoff are considered up to the cutoff frequency of 100 GHz. o .
The efficiency of the presented method may be demonstrated by the X / {Cel (&1)cer (i) }{Cé (12) } dns. (34)
fact that the above direct mode-matching results are calculated by o [Sa(&)sa(m) f1se (n:)
using a very simple 486-level PC (20 MHz, peak performance ca.For all four types of the TE-TM couplings
0.2 MFlops), at which the overall central processing unit (CPU) time B
for a typical frequency response with 1000 frequency points was Ke 1 =0. (39)

approximately 600 min. The most significant part of the CPU time | these equations the dash denotes the corresponding derivative,

was used for solving the eigenvalue problem. The maximum accuragyis the boundary coordinate of the smaller waveguide, and
(up to 13 digits) has been utilized in this case and the program has

not yet been optimized. The reference calculations in Fig. 4 with Gi = h; \/cosh2 (&) — cos? (n;)
the hybrid MM/FE method [3] took about 30 min on an IBM SP2 i ]
workstation (peak performance 260 MFlops). Therefore, the dirdgtL-ame’s factor of the transformation.
mode-matching technique presented in this paper may be roughly

estimated to be about 65 times faster than the MM/FE method [3] ACKNOWLEDGMENT
which is, for its part, already ca. one order of magnitude faster than
a usual three-dimensional (3-D) FEM.

The authors wish to thank R. Beyer for many discussions and for
the MM/FE reference calculations.
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Dispersion Characteristics of Open Microstrip N

Lines Using Closed-Form Asymptotic Extraction -~
: : 1, i l

Seong-Ook Park and Constantine A. Balanis hiy - AL, M ' -
Z X

Abstract—A full-wave spectral-domain method with an asymptotic Fig. 1. Geometry of a multilayer microstrip line structure.
extraction technique is formulated for multilayer microstrip lines. This .
formulation provides a simple closed-form representation of the asymp- 10 verify the accuracy and speed of the proposed method, com-
totic part of the impedance matrix by using Chebyshev polynomial basis putations based on this method were compared with other available
functions with the square-root edge condition and the asymptotic behavior regylts. There is good agreement between the proposed method and

of the Green's function. The formulation is applied to open microstrip 1o ayailable methods. The proposed method significantly reduces
lines. Numerical results, in the form of the effective dielectric constants,

are presented for the dominant mode. It is shown that the proposed the central processing unit (CPU) time and increases the reliability
method significantly reduces the computational time and improves the and accuracy.
accuracy over the conventional spectral-domain approach (SDA).

Il. CLOSED-FORM ASYMPTOTIC EXTRACTION

Index Terms—Accleration technique, microstrip lines, spectral-domain
q P P OF THE SPECTRAL-DOMAIN GREEN'S FUNCTION

approach.
The cross section of a general planar microstrip structure is shown
in Fig. 1. The strip conductor is assumed to be negligibly thin and the
. INTRODUCTION line lossless. The substrate and superstrate materials are lossless and
The spectral-domain approach (SDA) is the most popular technigsetropic. The open microstrip lines in [4] can be accurately modeled
for calculating the dispersion characteristics of open microstrip liney lettinghv s — oo, considering only one substrate and superstrate
[1] because it is easy to formulate and is a rigorous full-waviea Fig. 1. To calculate the effective dielectric constant (dispersion
solution for simple and uniform planar structures. The SDA has beeharacteristic), the proposed method in this paper is formulated to
extensively studied and refined to find well-suited basis functions thatlude any number of substrate or superstrate structures. However,
have the ability to accurately represent and resemble the longitudit@berify the authors’ method, an open microstrip line is used and the
and transverse current densitiek (and .J..) while minimizing the results are compared with previously published data [3], [4], [6].
computation time [2]-[5]. As an initial step to investigate the asymptotic closed-form ex-
However, there are still slight discrepancies of the relative effectitmction for the impedance matrix elements, the authors extract the
permittivity between many numerical results obtained by variowsymptotic behavior of the Green's function, with respectato
methods [6]. These discrepancies are critically dependent on #he&suming thata is sufficiently large, one can make the following
type of basis functions used and the truncation error due to thpproximation:
finite upper limit (instead of infinity) for the numerical integration B > N o 9
in the evaluation of the impedance matrix elements. Although the i = /@ + /3% =k = laf, i a” > (erer —ei)ko (1)
basis functions are carefully chosen to effectively represent the coth (vih;) = coth (|a|h;) = 1, if |alh; >3 (2)
expected current densities, lengthy computation time is required for a4+ 82 ~ o2 ©)
the numerical integration in the evaluation of the impedance matrix . ) L .
elements to achieve the desired accuracy. wherea., 3, and~; are the wavenumbers in ttig 2, andy directions,
In this paper, as one possible technique for overcoming this, tFSPectively [1].
authors present a closed form for the asymptotic part of the spectrap!"C€ (2) is in error by about 0.5% fpr|; = 3, coth (|alhi) ~ 1
impedance matrix to evaluate the relative effective permittivity in sir{S a good apprquaﬂon fthi > 3. Using the above approxma— .
gle conductor, open microstrip lines. Using the asymptotic techniq9ns, asymptotic expressions of the recurrence Green’s function in
the asymptotic part of impedance matrix elements is recognized [g]scan E’e der;ved_ as follows [aftfr corgectl_ng for the nj)lsprlnis in [7]
being integrable in closed form by introducing Chebyshev polynomidiNere; )/ 1iz(;) s replaced by ;) /a, ;) in (9a) andey ;) /oy
basis functions with the square-root edge condition.

is replaced bya ) /u? ;) in (9b)]:
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